Non-uniform hyperbolicity and existence of absolutely continuous invariant measures
نویسندگان
چکیده
منابع مشابه
Absolutely Continuous Invariant Measures That Are Maximal
Let A be a certain irreducible 0-1 matrix and let t denote the family of piecewise linear Markov maps on [0,1] which are consistent with A. The main result of this paper characterizes those maps in t whose (unique) absolutely continuous invariant measure is maximal, and proves that for "most" of the maps that are consistent with A, the absolutely continuous invariant measure is not maximal.
متن کاملA Generalization of Straube’s Theorem: Existence of Absolutely Continuous Invariant Measures for Random Maps
A randommap is a discrete-time dynamical system in which one of a number of transformations is randomly selected and applied at each iteration of the process. In this paper, we study randommaps. The main result provides a necessary and sufficient condition for the existence of absolutely continuous invariant measure for a randommap with constant probabilities and position-dependent probabilities.
متن کاملThe Existence of Absolutely Continuous Local Martingale Measures
We investigate the existence of an absolutely continuous martingale measure. For continuous processes we show that the absence of arbitrage for general admissible integrands implies the existence of an absolutely continuous (not necessarily equivalent) local martingale measure. We also rephrase Radon-Nikodym theorems for predictable processes. 1.Introduction. In our paper Delbaen and Schacherma...
متن کاملNon-stationary Non-uniform Hyperbolicity: Srb Measures for Dissipative Maps
We prove the existence of SRB measures for diffeomorphisms where a positive volume set of initial conditions satisfy an “effective hyperbolicity” condition that guarantees certain recurrence conditions on the iterates of Lebesgue measure. We give examples of systems that do not admit a dominated splitting but can be shown to have SRB measures using our methods.
متن کاملAbsolutely Continuous, Invariant Measures for Dissipative, Ergodic Transformations
We show that a dissipative, ergodic measure preserving transformation of a σ-finite, non-atomic measure space always has many non-proportional, absolutely continuous, invariant measures and is ergodic with respect to each one of these. Introduction Let (X,B, m, T ) be an invertible, ergodic measure preserving transformation of a σ-finite measure space, then there are no other σ-finite, m-absolu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the Brazilian Mathematical Society, New Series
سال: 2013
ISSN: 1678-7544,1678-7714
DOI: 10.1007/s00574-013-0004-z